

($s \times 2$, C-13, C-23), 147.84, 147.64 ($d \times 2$, C-9, C-19), 127.74, 127.63 ($s \times 2$, C-10, C-20), 124.17, 124.05 ($d \times 2$, C-15, C-25), 116.45, 116.37 and 115.39, 114.77 ($d \times 4$, C-14, C-24 and C-8, C-18), 111.84, 111.78 ($d \times 2$, C-11, C-21), 75.74, 71.21, 69.85 ($d \times 2$, dd, C-2, C-3, C-4, C-5), 56.34, 56.23 ($q \times 2$, C-16, C-26). FABMS m/z : 561 [$M - H$]⁻, 385 [$M - C_{10}H_9O_3$]⁻, 209 [$M - C_{20}H_{17}O_6$]⁻.

Acknowledgements—The late Dr L. Grotjahn provided the FABMS data.

REFERENCES

1. Risch, B., Herrmann, K., Wray, V. and Grotjahn, L. (1987) *Phytochemistry* **26**, 509.
2. Elliger, C. A., Lundin, R. E. and Haddon, W. F. (1981) *Phytochemistry* **20**, 1133.
3. Nagels, L., Van Dongen, W. and Parmentier, F. (1982) *Phytochemistry* **21**, 743.
4. Strack, D., Engel, U., Weissenböck, G., Grotjahn, L. and Wray, V. (1986) *Phytochemistry* **25**, 2605.

Phytochemistry, Vol. 27, No. 10, pp. 3329–3330, 1988.
Printed in Great Britain.

0031-9422/88 \$3.00 + 0.00
Pergamon Press plc.

p-HYDROXYACETOPHENONE DERIVATIVES OF THE MONOTYPIC GENUS *PLATYPODANTHERA*

L. PAREDES, J. JAKUPOVIC, F. BOHLMANN, R. M. KING† and H. ROBINSON*

Institute of Organic Chemistry, Technical University of Berlin, D-1000 Berlin 12, F.R.G.; *Smithsonian Institution, Dept of Botany, Washington D.C. 20560, U.S.A.

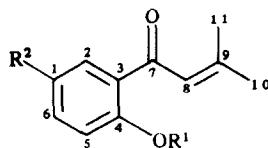
(Received 8 February 1988)

Key Word Index—*Platypodanthera melissaefolia*; Compositae; *p*-hydroxyacetophenone derivatives; tremetone derivatives.

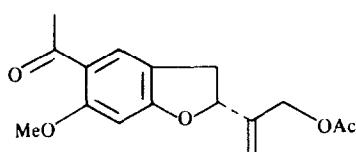
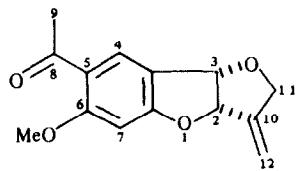
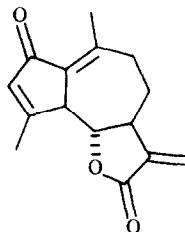
Abstract—The aerial parts of *Platypodanthera melissaefolia* afforded several known *p*-hydroxyacetophenone derivatives and two new ones. Furthermore, coumarins and a guaianolide were isolated. The chemotaxonomic relevance of these findings is discussed.

The monotypic genus *Platypodanthera* (Compositae, tribe Eupatorieae) is placed in the subtribe Gyptidinae [1]. The only species *P. melissaefolia* (DC) K. et R. was originally described as *Ageratum melissaefolium* DC and later transferred to *Trichogonia* by Mattfeld. However, the morphology clearly differs from both genera [2]. We now have studied the chemistry of this species. In addition to the coumarins herniarin and ayapin the *p*-hydroxyacetophenone derivative **1** [3] and the derived vinyl compounds **2** [4] and **3** [4] were isolated. Furthermore, the tremetone derivative **5** [5] and the guaianolide **7** [6] were present. Two further compounds (**4** and **6**) were closely related to **3** and **5** respectively.

The structure of **4** followed from its ¹H NMR spectrum which was in part similar to that of **3**. However, the signals of the vinylic protons were replaced by a singlet at δ 9.91, clearly indicating an aldehyde proton. Furthermore, the signals of the aromatic protons were shifted down field while the coupling remained unchanged. Accordingly, we were dealing with the aldehyde **4** most likely formed by oxidative degradation of **3**.


The structure of **6** also could be deduced from the ¹H NMR spectrum which was similar to that of 3α -hydroxy-11-acetoxytoxol [7]. However, some signals were clearly different. Especially, the pair of broadened doublets at δ 4.18 and 4.34 (H-11) required a more rigid

structure. Therefore, in agreement with the molecular formula, the corresponding cyclic anhydro derivative was present. The observed coupling of H-2 required a *cis*-ring closure if the value was compared with those of *cis*- and *trans*-substituted toxol derivatives [3, 4]. We have named compound **6**, platypodantherone.




The chemistry of *Platypodanthera* is in part related to that of some *Trichogonia* species, where vinyl derivatives like **2** and **3** and other *p*-hydroxyacetophenone derived compounds are present [4, 9]. From one species also guaianolides are reported [9]. Derivatives of *p*-hydroxyacetophenone are also isolated from representatives of *Bahianthus* [10], *Stylotrichium* [11] and *Campuloclinium* [unpublished], all placed in the subtribe Gyptidinae. However, these compounds are relatively widespread in many genera of the Compositae. The isolation of **2–4** and **7** indicated closest relationship of *Platypodanthera* to *Trichogonia* and not to *Ageratina*.

EXPERIMENTAL

The air-dried aerial parts (80 g, collected in February 1987 in Peru, voucher RMK 8597, deposited in the US National Herbarium Washington) was extracted and worked-up as reported previously [12]. The extract was first separated by CC into five fractions (petrol with increasing amounts of Et₂O). The first

	1	2	3	4
R¹	Me	H	Me	Me
R²	COMe	CH=CH ₂	CH=CH ₂	CHO

5**6****7**

fraction gave 100 mg **2** and the second 80 mg **3**. Fraction 3 was separated by HPLC (always MeOH-H₂O, 3:2, RP-8, *ca* 100 bar) affording 60 mg ayapin and 20 mg herniarin. Fraction 4 gave by HPLC 40 mg ayapin, 30 mg herniarin, 10 mg **6** (*R_t* 13.2 min), 35 mg **4** (*R_t* 16.3 min), 40 mg **1** (*R_t* 20.0 min) and 50 mg **5** (*R_t* 22.5 min). The last CC fraction gave by HPLC 30 mg **7**. Known compounds were identified by comparing the 400 MHz ¹H NMR spectra with those of authentic material.

3-Senecioyl anisaldehyde (4). Colourless oil; IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 2720, 1690 (CHO), 1665, 1610 (PhCO=C); MS *m/z* (rel. int.): 218.094 [M]⁺ (48) (calc. for C₁₃H₁₄O₃: 218.094), 203 [M - Me]⁺ (100), 189 [M - CHO]⁺ (61), 163 [M - C₄H₇]⁺ (92), 83 [C₄H₇CO]⁺ (98), 55 [83 - CO]⁺ (84); ¹H NMR (CDCl₃, 400 MHz): 8.05 (*d*, H-2), 7.07 (*d*, H-5), 7.97 (*dd*, H-6), 6.67 (*br s*, H-8), 1.99 (*br s*, H-10), 2.25 (*br s*, H-11), 9.91 (*s*, CHO) 3.98 (*s*, OMe) (J [Hz]: 2,6 = 2; 5,6 = 8.5).

Platypodantherone (6). Colourless oil; IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 1665, 1615 (PhCO); MS *m/z* (rel. int.): 246.089 [M]⁺ (51) (calcd for C₁₄H₁₄O₄: 246.089), 231 [M - Me]⁺ (100), 176 [231 - C₄H₇]⁺ (31), 161 [176 - Me]⁺ (12), 133 [161 - CO]⁺ (21); ¹H NMR (CDCl₃, 400 MHz): 5.45 (*br d*, H-2), 5.69 (*d*, H-3), 7.93 (*s*, H-4), 6.42 (*s*, H-7), 2.56 (*s*, H-9), 4.18 (*br d*, H-11), 4.34 (*br d*, H-11'), 5.54 (*br s*, H-12), 5.35 (*br s*, H-12'), 3.89 (*s*, OMe).

REFERENCES

1. King, R. M. and Robinson, H. (1987) *The Genera of the Eupatorieae*, Monographs in Systematic Botany from the Missouri Botanical Garden, **22**, 106.
2. King, R. M. and Robinson, H. (1972) *Phytologia* **24**, 182.
3. Bohlmann, F. and Grenz, M. (1970) *Chem. Ber.* **103**, 90.
4. Bohlmann, F., Zdero, C., Pickardt, J., Robinson, H. and King, R. M. (1981) *Phytochemistry* **20**, 1323.
5. Bohlmann, F., Zdero, C., King, R. M. and Robinson, H. (1977) *Phytochemistry* **16**, 768.
6. Bohlmann, F. and Zdero, C. (1972) *Tetrahedron Lett.* **7**, 621.
7. Hänsel, R., Cybulski, E. M., Cubucu, B., Mericli, A. H., Bohlmann, F. and Zdero, C. (1980) *Phytochemistry* **19**, 639.
8. Bohlmann, F., Knoll, K. H., Zdero, C., Mahanta, P. K., Grenz, M., Suwita, A., Ehlers, D., Le Van, N., Abraham, W. R. and Natu, A. A. (1977) *Phytochemistry* **16**, 965.
9. Bohlmann, F., Zdero, C., Jakupovic, J., Gerke, T., King, R. M. and Robinson, H. (1984) *Liebigs Ann. Chem.* 162.
10. Bohlmann, F., Gupta, R. K., King, R. M. and Robinson, H. (1981) *Phytochemistry* **20**, 331.
11. Bohlmann, F., Suwita, A., Robinson, H. and King, R. M. (1981) *Phytochemistry* **20**, 1887.
12. Bohlmann, F., Zdero, C., King, R. M. and Robinson, H. (1984) *Phytochemistry* **23**, 1979.